In Proceedings of the Fifth International Conference on Tools and

Al gorithns for the Construction and Anal ysis of Systens, 22-26 March
1999, Ansterdam the Netherlands published as Lecture Notes in
Conputer Science, vol. 1579, pp. 44-58. Springer-Verlag, Berlin, 1999.

Analyzing Stochastic Fixed-Priority
Real-Time Systems

Mark K. Gardner and Jane W.S. Liu

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{mkgardne, janeliu}@cs.uiuc.edu

Abstract. Traditionally, real-time systems require that the deadlines of
all jobs be met. For many applications, however, this is an overly strin-
gent requirement. An occasional missed deadline may cause decreased
performance but is nevertheless acceptable. We present an analysis tech-
nique by which a lower bound on the percentage of deadlines that a peri-
odic task meets is determined and compare the lower bound with simula-
tion results for an example system. We have implemented the technique
in the PERTS real-time system prototyping environment [6, 7].

1 Introduction

A distinguishing characteristic of real-time computer systems is the requirement
that the system meet its temporal constraints. While there are many different
types of constraints, the most common form is expressed in terms of deadlines:
a job completes its execution by its deadline. In a hard real-time system, all jobs
must meet their deadlines and a missed deadline is treated as a fatal fault. Hence
hard real-time systems are designed to ensure that there are no missed deadlines,
often at the expense of resource utilization and average performance. Hard real-
time systems are most often found in safety or mission critical applications.

The last few years have seen the proliferation of applications known as soft
real-time systems. Examples include telecommunications and signal processing
systems. For these systems, missed deadlines result in performance degradation.
However, provided that the frequency of missed deadlines is below some thresh-
old, the real-time performance of such a system is nevertheless acceptable. While
many techniques for designing and validating hard real-time systems exist, there
are few such techniques for soft real-time systems. In this paper, we present a
schedulability analysis technique for fixed-priority systems to determine lower
bounds on the frequency of missed deadlines and compare the lower bound with
simulation results for an example system.

We begin, in the next section, with a brief review of schedulability analysis
techniques for validating hard real-time systems, motivate the need for better
techniques to analyze soft-real time systems and describe closely related work.
In Section 3, we present the Stochastic Time Demand Analysis technique and

show how it allows a designer greater freedom in trading the certainty with
which deadlines are met for other design goals. We compute a lower bound on
the probability that deadlines are met by jobs in a simple system and compare
the bounds with the percentage of deadlines met obtained by simulation. Sec-
tion 4 briefly discusses issues which we discovered while implementing STDA in
the PERTS real-time system prototyping environment and Section 5 discusses
possible directions of future research.

2 Background and Related Work

The periodic task model [5] has proven useful in describing the characteristics of
real-time systems. It is the foundation of state-of-the-art techniques for analyzing
the behavior of hard real-time systems. According to this model, a real-time
system consists of a set of tasks, each of which consists of a (possibly) infinite
stream of computations or communications, called jobs. We denote the ith task
of the system by 7; and the jth job of the task (or the jth job since some time
instant) by J; ;. The execution time of a job is the amount of time the job takes
to complete if it executes alone. All the jobs in a task have a common minimum
(maximum) execution time denoted E; (E;}). Moreover, the jobs are released
for execution, (i.e., arrive), with a common minimum inter-release time. The
minimum inter-release time (or inter-arrival time) is called the period of the
task. The period of each task 7; is larger than zero and is denoted by P;. A
job J; ; becomes ready for execution at its release time, r; ;. It must complete
execution by its absolute deadline, d; ;, or it is said to have missed its deadline.
Figure 1 shows these quantities in the context of a time-line. The length of time
between the release time and absolute deadline of every job in each task T; is
constant. This length is called the relative deadline of the task and is denoted
D; = d; ; — r; ;. The completion time of J; ; is denoted ¢; ; and the response
time 1s Pij =Cij—Tij-

In this paper, we will have occasion to refer to the actual execution time of
J; ; which we denote e; ;. The maximum utilization of the task is the ratio of
the maximum execution time to the minimum inter-arrival time (period) and
is denoted by U; = EZ‘"/PZ Finally, the release time of the first job in a task
is called the phase of the task. We say that tasks are in-phase when they have
identical phases.

J|,]

T NN N

r C

i i dij Tijea

Fig. 1. Time-line for Task T;

In modern real-time systems, tasks are scheduled in a priority driven man-
ner. At any point in time, the ready job with the highest priority executes. If at
time £, a job of a higher priority becomes ready, the executing job is preempted
and the higher priority job executes. Most priority assignments are fixed prior-
ity. According to a fixed-priority scheduling policy, all jobs in a task have the
same priority. We denote the priority of task 7; and hence the priority of jobs
Ji1,Ji2, ... by é;. For convenience and without loss of generality, we assume
that priorities are distinct and arrange the tasks in order of decreasing priority
T; < T;41 such that 77 has a higher priority than 75, etc.

2.1 Deterministic Schedulability Analysis Methods

A task in a system is said to be schedulable if all jobs in the task meet their
deadlines. A system of real-time tasks is schedulable if all tasks in the system
are schedulable. One of the most commonly used fixed-priority assignments is
Rate Monotonic (RM). According to this policy, the shorter the period P; of a
task, the higher its priority. It is shown in [5] that a system of n tasks scheduled
on a RM basis is schedulable if the sum of the maximum utilizations of the
tasks, denoted U, satisfies the inequality U < n(Z% — 1). The expression on the
right hand side of the inequality is often called the Liu and Layland bound.
The Liu and Layland bound gives a sufficient and hence conservative condition.
A system may be schedulable rate monotonically even though its maximum
utilization exceeds the Liu and Layland bound.

The Time Demand Analysis (TDA) method [4] provides a more accurate
and general characterization of the ability of arbitrary fixed-priority systems to
meet all deadlines. It is based upon the observation that the worst-case response
time of a job occurs when it is released at a critical instant. For a system of
independent preemptive periodic tasks scheduled on a fixed-priority basis, a
critical instant of a task occurs when a job in each task is released along with a
job from all tasks of equal or higher priority [5]. Therefore, to bound the worst
case response time of all the jobs in a task T;, it suffices for us to look at a
job that is released at a critical instant. We call this job J; 1. The time demand
function of T;, denoted w;(t), is the total maximum time demanded by J; 1, as
well as all the jobs that complete before J; 1, as a function of time ¢ since the
release of J; 1. It is a function which increases by the maximum execution time
E;’ every time a higher priority job J; is released. If there is a ¢ < D; such
that w;(¢) <t is satisfied, then no job in T; will miss its deadline.

Figure 2 shows the time demand function for each of the tasks in Example #1.
The parameters of the tasks are listed in Table 1.1 There is sufficient time for
tasks 77, 15 and T3 by 100, 200 and 600 respectively. A schedule of the system
with the initial job in each task released at a critical instant is shown in Fig. 3.
Even though the processor is idle from 1100-1200, it is clear that increasing the
maximum execution time of any task will result in J3; missing its deadline at

600.

! We note that the maximum total utilization of the tasks is 0.92, greater than the
Liu and Layland bound, which is 0.78. However, the system is schedulable.

Table 1. Parameters of the Tasks in Example #1.

T; i P; Ef D; U;

2

T 1 300 100 300 0.333
T 2 400 100 400 0.250
Ts 3 600 200 600 0.333
Total 0.917

500

Time Demand

Time Supply

Fig. 2. Time Demand Analysis of the Example System

0 500 1000

Fig. 3. Schedule of the Example System

The version of TDA given above works only when all jobs will complete by
the release of the next job in the task, which is the case for the example. To
determine whether all jobs in T; meet their deadlines when some job Ji ;41 may
be released before the previous job Jg ; in a higher priority task 7} completes, we
must compute the worst case bound on response times of all jobs in T; executed
in a level-i busy interval that begins at an instant when a job J; ; in T; is released
at the same time with a job in every higher priority task.? (A level-i busy interval
is an interval of time which begins when a job in 7; or a higher priority task is
released and immediately prior to the instant no job in those tasks is ready for
execution. It ends at the first time instant ¢ at which all jobs in 7; and higher
priority tasks released before ¢ have completed.) We call such a busy interval an
in-phase level-¢; busy interval.

Analogous to the critical instant analysis in [5], it has been shown in [3] that
it suffices for us to consider only an in-phase level-¢; busy interval. The reasons
are

1. if a job in 7T; is ever released at the same time as a job in every higher
priority task, that instant is the beginning of an in-phase busy interval (i.e.,
the system has no backlog at that instant),

2. the length of an in-phase level-¢; busy interval is longer than a level-¢; busy
interval that is not in-phase (and hence more jobs in 7; are released in the
in-phase busy interval), and

3. the response time of every job in a level-¢; busy interval that is not in phase
is no greater than the response time of the corresponding job in an in-phase
level-¢; busy interval.

For these reasons, if all jobs in an in-phase level-7 busy interval meet their dead-
lines, the task is schedulable [3]. Stochastic Time Demand Analysis described in
Section 3 uses this generalization of TDA.

We know from the above analysis that the system of tasks in Table 1 is
schedulable. However, suppose that a significantly less expensive processor is
available which is half as fast. The profitability of the product would be greatly
enhanced if the slower processor could be used. Using the slower processor, the
execution time doubles but the periods do not change because they are deter-
mined by the environment. Thus the system utilization is doubled. The hard
real-time analysis techniques discussed earlier tell us whether or not a deadline
will be missed, but not how often. Although we may be willing to trade occa-
sional missed deadlines for the use of the slower processor, we are unable to do
so based on available hard real-time techniques. A different approach is needed.

2.2 Probabilistic Approaches

We are aware of only two other techniques that exploit information about the
statistical behavior of periodic tasks to facilitate better design of soft real-time

2 This instant is still called a critical instant in the literature but it is not the original
definition of a critical instant since J;; no longer has the longest response time
among all jobs in T;.

systems: Probabilistic Time Demand Analysis (PTDA) [10] and Statistical Rate
Monotonic Scheduling (SRMS) [1].

Like the proposed method, PTDA attempts to provide a lower bound on the
probability that jobs in a task will complete in time. It is a straight forward
extension to TDA in which the time demand is computed by convolving the
probability density functions of the execution times instead of summing the
maximum execution times as in TDA. PTDA assumes that the relative deadline
of all tasks are less than or equal to their periods. It computes a lower bound
on the probability that jobs in a task complete in time by determining the
probability that the time supply equals or exceeds the time demand at the
deadline of the first job in the task. This assumption is not valid, especially
when the average utilization of the system approaches one.

SRMS is an extension to classical Rate Monotonic Scheduling (RMS). Tts
primary goal is to schedule tasks with highly variable execution times in such a
way that the portion of the processor time allocated to each task is met on the
average. Variable execution times are “smoothed” by aggregating the executions
of several jobs in a task and allocating an execution time budget for the aggregate
(which may be proportional to the original). A job is released only if its task
contains sufficient budget to complete in time and if higher priority jobs will not
prevent its timely completion. All other jobs are dropped. The analysis given in
[1] can only be used to compute the percentage of jobs in each task that will be
released for execution (and hence complete in time). Moreover, it is applicable
only when the periods of the tasks are related in a harmonic way, 1.e., each
larger period P; is an integer multiple of every smaller period P;. The method
presented here seeks to provide a lower bound on the percentage of jobs which
meet their deadlines when all jobs are released. It is not restricted to harmonic
systems and the RM scheduling policy.

3 Stochastic Time Demand Analysis

In this section we describe an algorithm, called Stochastic Time-Demand Analy-
sis (STDA), which computes a lower bound on the probability that jobs in each
task will meet their deadlines. We also compare the bound with the average
behavior of a system as determined by simulation.

Consider the execution of a task 7;. Let J; ; be the jth job in 7T; released in a
level-¢; busy interval. To simplify the discussion and without loss of generality,
we take as the time origin the beginning of this interval. The response time p; ;
of job J; ; is a function of the execution times of all jobs which can execute in the
interval [r; ;,¢; ;). As in the deterministic analysis, we use the minimum inter-
release time in our analysis. However, the execution times of tasks are random
variables, hence the response time of each job in a task is a random variable.
Our analysis assumes that the execution time FE; of a job in 7; is statistically
independent of that of other jobs in 7; and jobs in other tasks. Again, because a
job may not complete by the release of the subsequent job in the same task, we
must consider all jobs in a level-¢; busy interval, and note that the length of a

level-¢; busy interval is also a random variable. Bounding the length of a level-¢;
busy interval is key to STDA. First we show how to compute the response time
distribution of jobs in task T;.

Let w; ;(t) denote the time demand of all jobs that execute in the interval
[rij,t). Job J;; completes when there is sufficient time to meet the demand
w; ;(t) = t. Let W; ;(t) = Plw; ;(t) <t] denote the probability that the time
demand up to ¢ is met at ¢, given that the busy interval has not ended. We note
that W; ;(t) is also the probability that the response time of J; ; is less than
or equal to . The probability that J; ; meets its deadline is therefore at least
Wi ;(D;). We now turn our attention to computing W ;(t).

Consider a task T; from the system. The response time distribution Wj ;(¢)
is computed by conditioning on whether or not a backlog of work from equal or
higher priority tasks exists when J; ; is released. If no backlog exists, a level-¢;
busy interval starts at the release of J; ; (which we relabel J; 1) and

Wi (1) = Plusa (1) <1] . M)

Otherwise, the response time distributions for the remaining jobs of T; in the
busy interval are computed in order of their release by

Wi j(t) = Plw; j(t) <tlwij-1(rij) > rijl . (2)

For the highest priority task, the response time distribution of the first job in
a busy interval is the same as its execution time distribution. The response
time distribution of the subsequent job in the busy interval is computed by
convolving the execution time distribution of the task with the distribution of
the backlog obtained by conditioning. This process continues until the end of
the busy interval. Equations 1 and 2 are also used to compute the response time
distributions of the remaining tasks in the system.

We now compute W; ;(t) for j > 1. Clearly jobs with a priority higher than
¢; can execute in the interval [r; ;,¢; ;). Jobs among J; 1, J;i 2, ..., J; j—1 that
complete after r; ; also execute in this interval. Their effect is taken into account
in the conditioning process. To compute W; ;(t), we must still take into account
the time demand of jobs of higher priority tasks released in the interval [r; ;, ¢; ;).
This is done by dividing [r; ;, ¢; ;) into sub-intervals separated by releases of
higher priority jobs and conditioning on whether a backlog of work exists at the
start of each sub-interval. For example, suppose that only one higher priority
job Ji; is released in the interval [r; ;,¢; ;) dividing the interval into two sub-
intervals, [r; ;, 7 1) and [rg g, ¢; ;). The probability that J; ; will complete by time
t before ry; is

Wi j(t) = Plwi ;(t) <t|wij_a(rij) > rig], 3)
i.e, for ¢ in the first sub-interval [r; ;, 74), and is

Wi j(t) = Plw; ;(t) <tlwij-1(rij) > rij,wij(res) > e (4)
Plwi ;(rei) > rei]

for ¢ in the second sub-interval [rg;,7; j41). The probability that a job will
complete by its deadline is determined by computing W; ;(D;). Alternatively,
the sub-interval distributions can be combined before W; ;(D;) is computed.

Equations 1 and 2 allow the response time distributions of jobs in a level-
¢; busy interval to be computed for any combination of initial release times
{ri1|1 < i< n}.In order to compute a lower bound on the probability that jobs
complete by their deadlines, the worst-case combination of release times needs
to be identified. As discussed previously, an upper bound on the response time of
jobs from T; according to the deterministic TDA is obtained by computing the
response times of jobs executed in an in-phase level-¢; busy interval. Sadly, we
note that it is not longer sufficient for us to consider an in-phase busy interval.
The proof that no backlog exists at the instant a job is released simultaneously
with the release of jobs of higher priority tasks requires that the maximum total
utilization of the system is no greater than one, which is the assumption of
deterministic TDA. STDA requires only that the average total utilization of the
system 1s less than one hence some systems may not meet the condition. It is not
clear what relationship between the release times of the first jobs in a level-¢;
busy interval causes some job in 7; to have the maximum possible response time
and hence the smallest probability of completing in time. For now, we assume
that the first jobs in all tasks are released in-phase and discuss the rationale for
this assumption later.

We now turn our attention to the matter of determining when a busy interval
ends. We note that since there i1s a single task per priority level, a level-¢;
busy interval ends if some job J; ; in T; completes before the next job J; j41 is
released. Thus we know that the busy interval has surely ended if, for some j,
Plwij(rij+1) <rijpa] =1.0.°

As an example, we now use STDA to analyze the behavior of a system of two
tasks shown in Table 2. The execution time of each task is uniformly distributed
(with parameters chosen to accentuate the potential for missed deadlines). The
worst-case utilization of the system is 1.41 and the mean utilization of the system
is 0.71. Consequently, we would expect that some jobs will miss their deadlines.
To determine the probability of jobs in each of the tasks missing their deadlines,
we apply the procedure outlined above. Because its maximum utilization is less
than 1.0, we know that 7} will not miss any deadlines. Therefore we begin the
analysis with T5.

It is apparent that the maximum time demand of 7% in the interval [0, 400)
exceeds the time supply because the sum of the maximum utilizations of the
two tasks exceeds one. Because Js; may not have complete by the time J5 o
is released, the response time of J; 3 may be greater than that of Jy ;. At the
very least we need to compute the response time distributions for J; ;1 and Js 3.
To compute the probability that Jy; completes by its deadline, the interval

% When multiple tasks have the same priority, jobs from the same priority level must
have their response time distributions computed in order of increasing release times.
The busy interval will have ended if all jobs with equal or higher priority released
before time ¢t have completed by ¢ with probability 1.0.

Table 2. Parameters of the Tasks in Example #2.

T P D ET E; E} u- U Ut

T 300 300 1 100 199 0.0033 0.333 0.663
T 400 400 1 150 299 0.0025 0.375 0.748

Total 0.0058 0.708 1.411

[0,400) is divided into sub-intervals [0, 300) and [300,400) due to the release of
J1,2 at 300. In the first interval, the time demand includes only the execution
times of J;; and Jz 1. The time demand of the second interval includes the
execution time of J; o, as well as the work remaining from the first interval. The
probability that a particular time demand occurs is conditioned on whether or
not Jy 1 completes before Jy 5 is released. We first consider the interval [0, 300).
The probability that J, ; will finish by 300 is Plws,1(300) < 300], where w» 1(t)
for 0 <t < 300 is computed via the sum E; + E5 and has the density function
and distribution shown in Fig. 4. The probability that J, ; completes by 300 is

0.668.

0010 10
0008 | 08|
E z osf
g g
& oo} & o4t
0002 | 02}
0.000 00
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Time Demand Time Demand
(a) Density (b) Distribution

Fig. 4. Time demand of J 1 over interval [0, 300).

We now compute Plws 1(400) < 400 | ws,1(300) > 300] for ¢ in the interval
[300,400). Because J ;1 may not have completed by time 300, there are between
0 and 198 time units of work remaining when J; » is released. The density func-
tion for the backlog is the density function of Fig. 4(a) in the range 300-498,
normalized to 1.0 as is implied by statistical conditioning. The random variable
for the backlog is then added to the execution time of J; 3. The resulting density
and distribution are given in Fig. 5. The probability that J, ; completes by 400,
given that it did not complete by 300, is 0.209 as shown in Fig. 5(b).

0.010 10

0008 | o8|
E z osf
g g
& oot & o4t

0002 | 02}

0.000 00

300 350 400 450 500 550 600 650 700 300 350 400 450 500 550 600 650 700
Time Demand Time Demand
(a) Density (b) Distribution

Fig. 5. Time demand of J;; over interval [300, 400).

Combining the results of analyzing the two sub-intervals gives us the distri-
bution of the response time of J3; and thus the probability that J5 ; completes
by 400 and meets its deadline

Plws,1(400) < 400] = (0.668) + (0.209)(0.332) = 0.738.. (5)

The complete density and distribution functions of the response time of Js
over the interval [0,400) are given in Fig. 6. We note that the probability that
Ja,1 will not complete before 5 5 is 0.262 so it is also necessary to compute the
probability that J; o completes by its deadline. The analysis proceeds following
the same pattern until the busy interval ends. The probability that J; » completes
by its deadline at 800 is 0.994. The probability that J, 3 completes by its deadline
at 1200 i1s 1.000. Thus a lower bound on the probability that jobs in 7% meet
their deadlines is 0.738.

We now return to the choice of initial phases for tasks. While we do not know
what phasing causes a critical instance to occur, we hypothesize that the event
occurs so infrequently that the average completion rate is not significantly af-
fected. To test this hypothesis, we performed a series of simulation experiments
on a number of systems. For each system, we determine the behavior of the sys-
tem when each task 7; has a randomly distributed phase in the range (—P;, P;)
and when all tasks have equal phases, i.e., are released at time 0. (We call a
unique combination of phases and actual execution times of the tasks a run.) A
large number of jobs in each task are released in each run. For each run, a his-
togram of the response time of the jobs in each task is computed. The histograms
of all the runs are averaged, bin by bin, to obtain a histogram representing the
average behavior of the tasks of the system. The histograms for in-phase and
random-phase releases are then compared.

For the tasks in Example 2, we performed 1000 runs for both in-phase and
random-phase releases, each run containing the release of at least 1000 jobs
in each task. The width of the 95% confidence interval on the profile of the

0.010 1.0

0.008 - 08 r
E‘ 0.006 - E‘ 06
: :
T 0004 oo 04

0.002 - 0.2

0.000 0.0

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time Demand Time Demand
(a) Density (b) Distribution
Fig. 6. Time demand of J; over interval [0, 400).
histogram was +5% or less except in the tail of the density function where the

probability was small to begin with. Figure 7 shows the histograms for task T3
from our example.

0.0030

0.0025 -

0.0020

0.0015

Probability

0.0010

0.0005

0.0000
0

1.0
In-phase —
Ineoh Random-phase -
n-phase 08 |
Random-phase
£ 06
5
o 04
02
0.0
200 400 600 800 1000 0 200 400 600 800 1000
Response Time Response Time
(a) Density (b) Distribution

Fig. 7. Average response times of T5.

As Fig. 7(b) shows, the average response time distribution for in-phase re-
leases bounds the distribution for random-phase releases from below. The av-
erage response time density function, Figure 7(a), exhibits a curious saw-tooth
behavior for in-phase releases. The behavior is caused by the fixed relationship
between the release times of 77 and T5. This relationship causes the comple-
tion of jobs in 75 to be delay by jobs in 77 in a periodic manner. The linearly
rising shape of each tooth is due to the uniform distribution of the execution
time of 77 while the general shape of the curve results from combined effect

of the execution time distributions of both 77 and T,. Figure 8 compares the
histograms for tasks with the same parameters as our example but with ex-
ponential distribution times. Once again, the distribution with in-phase release
bounds the distribution with random-phase release from below. Also, the in-
phase release curve exhibits a similar saw-tooth shape. However, each tooth has
a more rounded shape due to the exponential distribution of 7. Finally, the
asymptotically decreasing shape of the density curves indicates the combined
effect of the execution time distributions of both tasks.

0.0030 10
In-phase —
Random-phase -
0.0025 In-phase
08 r
0.0020 - Random-phase
2 z o0sf
8 o005 f 8
o I<}
& & 04 -
0.0010
0.0005 | 02 ¢
0.0000 0.0
500 1000 1500 2000 0 500 1000 1500 2000
Response Time Response Time
(a) Density (b) Distribution

Fig. 8. Average response times of 7> (Exponential).

Despite the large number of systems simulated, we have not observed a case
where tasks that are released with arbitrary phases have a lower average com-
pletion rate than the same tasks that are released in-phase. We therefore use
in-phase busy intervals in computing a lower bound on the average completion
rate using STDA.

We now compare the lower bound on the probability of meeting deadlines
obtained via STDA with the percentage of deadlines met for each task in Table 2.
The percentage of the jobs in each task meeting their deadlines was obtained
by simulating the behavior of the system for 1000 runs. Each run released and
executed 1333 jobs of 77 and 1000 jobs of 75 to produce a response time dis-
tribution (in the form of a histogram) for the tasks of the system. Once again,
the response time distributions of the runs were averaged, bin by bin, to obtain
average response time distributions for the tasks, as well as to assess statistical
significance. The behavior of the system was observed when both tasks have
identical phases, as well as when the phase of each task T; is uniformly dis-
tributed in the range (—P;, P;). As previously observed, the average completion
rate for systems in which the tasks are in-phase was lower than the average
completion rate for systems in which the tasks have random phases by a small
but statistically significant amount at a 95% confidence level. (The simulation
results shown below are for the case where the tasks are released in-phase.)

Table 3. A comparison of STDA bound with simulation results.

Simulation

T; STDA In-phase = Random-phase Ratio

T 100.0 100.0 £0.0 100.0 £ 0.0 1.000
T 73.8 80.8 £ 0.1 81.24+0.1 0913

According to Table 3 the probability that jobs complete by their deadlines, as
computed by STDA, bounds the percentage of deadlines met from below. The
bound differs from the simulation results for 75 by only 8.7%. The difference
occurs because STDA computes the worst-case probability that jobs in the first
busy interval meet their deadlines rather than the percentage of all jobs in the
task that meet their deadlines. In this simple example, simulating the behavior
of the two tasks is reasonable. However, for realistic systems with many tasks,
simulation requires significantly greater effort than STDA. Hence STDA provides
a faster way to determine if the probability of a missed deadline is acceptable.

4 Implementing STDA

In this section, we discuss an implementation of STDA in the PERTS real-time
prototyping environment [6, 7]. PERTS is a tool which facilitates the design and
analysis of real-time systems by applying theoretical results, where possible, or
by simulating the system to determine its behavior. The issues we discuss are not
particular to PERTS and must be addressed by any implementation of STDA.

One of the main operations in STDA is the summing of random variables rep-
resenting execution times. It is well known that the probability density function
of the sum of two statistically independent random variables can be obtained by
convolution f(t) = ¢g(¢t)®h(t).The direct way to perform convolution on a digital
computer is to discretize the integral using a constant spacing between samples
fi= Z;V:_Ol gih;—;. Computing f by direct convolution is an O(N?) operation,
where N is the number of points in the discrete representations of ¢ and h. It
has long been known that the asymptotic cost of convolution can be reduced
by applying the Convolution Theorem ¢(t) @ h(t) <= G(f)H(f), where G(f)
and H(f) are the Fourier transforms of g(¢) and h(t) respectively. The result
is an O(N log, N) algorithm for convolution. There are many descriptions and
implementations of the FFT readily available (e.g., [2, 8, 9]).

Three issues need to be considered when using FFT to perform convolu-
tion. First, the discrete representations of the probability density functions being
convolved must have the same sampling rate and consist of the same number
of points. In our application, the vectors containing the discretized probability
density functions will almost always have different sample rates and numbers of
points as a result of the conditioning process. Thus new vectors must be created
by interpolation before every convolution. Since interpolation can be performed
in O(N log, N) time, the asymptotic complexity of convolution is not increased.

Second, sufficient “zero padding” is required to ensure that aliasing does not
occur [9]. The length of the vectors are also required to be a power of two. As a
result, the vectors are likely to be large and sparsely populated in our applica-
tion. Our experience indicates that the vectors are often only 50-75% filled with
non-zero data. The final issue concerns the number of points used to represent
the probability density functions for sufficient accuracy.

Figure 9(a) shows the error between the computed and exact distributions of
response time corresponding to Fig. 4(b) as a function of the number of points
in the discrete representation. Figure 9(b) shows the computation time as a
function of the number of points. In order to maintain acceptable interactive
response, we have chosen a default of 1024 points in the PERTS implementation
of STDA, which yields a maximum absolute error of slightly over 0.005 for this
example.

0.020 50
256 —
512 -
2 1024 40+
£ 0015 | 2048 7
2 4096 ---- e
& E 30}
£ E
50010 5
5 I}
E ‘g 20
E £
2 0005 8
< 10}
_ 00

0 50 100 150 200 250 300 350 400 450 500 0 1000 2000 3000 4000 5000

Response Time Vector Length
(a) Accuracy (b) Time

Fig. 9. Convolution via FFT versus number of points.

5 Conclusions and Future Work

Using hard real-time analysis techniques to design soft real-time system can
lead to low resource utilization, increased cost, and poor average performance.
In this paper, we have presented the Stochastic Time Demand Analysis method
for computing a lower bound on the percentage of jobs in a task that meet their
deadlines under a fixed priority scheduling policy. The method enables missed
deadlines to be balanced against other design goals such as processor utilization
or cost.

In addition to describing the STDA method, we have also performed a sim-
ulation study to check the tightness of the bound. For the system used as an
example, the bound has less than 10% error. While simulation of the example
system of two tasks may not be much more complicated and time consuming than

STDA, the effort to bound the probability of missed deadlines is significantly less
than required to simulate systems with many tasks. Hence STDA gives a faster
way to determine whether the probability of missed deadlines is acceptable. We
have implemented the STDA method in the PERTS environment.

While STDA improves our ability to predict the behavior of soft real-time
systems, it is restricted to fixed priority assignments. Similar techniques need
to be developed for systems with dynamic priority assignments, such as those
scheduled Earliest-Deadline-First. The probability that consecutive jobs will miss
their deadlines also needs to be computed, as many soft real-time applications
cannot afford to miss more than a certain number of deadlines in a row. Finally,
the behavior of systems in which execution times are dependent, periods of jobs
vary, jobs share resources, or jobs have precedence constraints between them
needs to be considered.

References

[1] A. K. Atlas and A. Bestavros. Statistical rate monotonic scheduling. Technical
Report BUCS-TR-98-010, Boston University, 1998.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[3] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary dead-
lines. In 11th IEFEF Real-Time Systems Symposium, pages 201-209, December
1990.

[4] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In IEFE Real-Time Systems
Symposium, pages 166-171, December 1989.

[5] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the Association for Computing Machinery,
20(1):46-61, January 1973.

[6] J. W. S. Liu, C. L. Liu, Z. Deng, T. S. Tia, J. Sun, M. Storch, D. Hull, J. L.
Redondo, R. Bettati, and A. Silberman. PERTS: A prototyping environment for
real-time systems. International Journal of Software Engineering and Knowledge
Engineering, 6(2):161-177, 1996.

[7] J. W. S. Liu, J. L. Redondo, Z. Deng, T. S. Tia, R. Bettati, A. Silberman,
M. Storch, R. Ha, and W. K. Shih. PERTS: A prototyping environment for real-
time systems. In Proceedings of the 14th IEFE Real-Time Systems Symposium,
pages 184-188, Raleigh-Durham, North Carolina, December 1993.

[8] H. J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-
Verlag, second edition, 1982.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, second edition, 1992.

[10] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W.-S. Liu.
Probabilistic performance guarantee for real-time tasks with varying computation
times. In Proceedings, Real-Time Technology and Applications Symposium, pages
164-173, Chicago, lllinois, May 1995. IEEE.

